Nullable columns troubleshooting¶
Common issues and solutions for nullable column performance in ClickHouse and Tinybird.
Common issues¶
Performance impact of nullable columns¶
Issue: Nullable columns can significantly impact query performance
Solution: Use nullable columns only when necessary
-- Avoid nullable for frequently filtered columns -- Instead of: Nullable(String) user_id -- Use: String user_id with default value
Inefficient nullable operations¶
Issue: Operations on nullable columns without proper handling
Solution: Handle nulls explicitly in queries
-- Handle nulls explicitly
SELECT
CASE
WHEN nullable_column IS NULL THEN 'unknown'
ELSE nullable_column
END as safe_column
FROM events
Performance optimization¶
Using COALESCE¶
Issue: Complex null handling in queries
Solution: Use COALESCE for simple null handling
-- Use COALESCE for null handling SELECT COALESCE(nullable_column, 'default_value') as safe_column FROM events
Nullable columns cannot be sorting keys¶
Issue: Nullable columns cannot be used in sorting keys (ENGINE_SORTING_KEY), limiting query optimization
Solution: Use COALESCE to create non-nullable columns for sorting keys
-- Data Source schema: use COALESCE for sorting key SCHEMA > `id` Int64, `nullable_status` Nullable(String), `status` String DEFAULT COALESCE(nullable_status, 'unknown'), `date` DateTime ENGINE "MergeTree" ENGINE_SORTING_KEY "status, date"
This allows you to use the column in the sorting key while preserving the nullable information in the original column.
Memory considerations¶
Memory overhead of nullable columns¶
Issue: Nullable columns use more memory than non-nullable
Solution: Consider alternatives for large datasets
-- Use default values instead of nullable for large datasets -- Instead of: Nullable(UInt32) value -- Use: UInt32 value DEFAULT 0
Storage optimization¶
Issue: Nullable columns with many null values
Solution: Use sparse columns or separate null tracking
-- Track nulls separately for optimization SELECT value, CASE WHEN value IS NULL THEN 1 ELSE 0 END as is_null FROM events
Best practices¶
- Use nullable sparingly - Only for truly optional data
- Nullable columns can't be sorting keys - Use COALESCE to create non-nullable columns for sorting keys
- Handle nulls explicitly - Use COALESCE and CASE statements
- Consider alternatives - Use default values instead of nullable for large datasets
- Nullable columns are bigger and slower - They use more memory and storage than non-nullable columns
- Monitor nullable performance - Track impact on query performance
Related documentation¶
- Fix common mistakes - Source of truth for data type optimization, including nullable columns
- Data types
- Query optimization
- Performance monitoring